A population-based target-mediated drug disposition model to predict clinical pharmacokinetics of BMS-986090, an anti-CD40 antagonistic domain antibody

Shuang Liang, Haiqing Wang, Rong Shi, Rong Liu, Anish Suri, Suzanne Suchard, Steve Nadler, Marek Honczarenko, Uma Kavita, Vaishali Shah, John Throup, Ihab Girgis, Zheng Yang

Bristol-Myers Squibb, Princeton, NJ, USA

Background: BMS-986090, a dimeric anti-human CD40 V\textsubscript{H} antagonist domain antibody formatted with a human IgG4 Fc tail (dAb-huIgG4), has been developed for the treatment of autoimmune-diseases. Because BMS-986090 does not cross react with monkey CD40, a surrogate anti-monkey CD40 dAb-huIgG4 (BMS-986091), which binds to cynomolgus monkey CD40 with similar affinity to that of BMS-986090 for human CD40, was prepared to facilitate preclinical characterization and subsequent clinical development of BMS-986090.

Objectives: The objective of this analysis was to develop a population-based target-mediated drug disposition model to predict pharmacokinetics of BMS-986090 in first-in-human (FIH) study.

Methods: The analysis included 288 samples of the plasma pharmacokinetics (PK) of BMS-986091 and 196 samples of CD40 receptor occupancy (RO) on peripheral-blood mononuclear cells (PBMC) from 16 cynomolgus monkeys. A two-compartment PK/RO model with first-order absorption and quasi-equilibrium (QE) approximation 1 for target-mediated drug disposition (TMDD) 2 was used to describe the observed non-linear PK and the corresponding RO across 3 dose levels (0.5, 5, or 50 mg/kg, subcutaneously or intravenously). The model-estimated parameters were subsequently scaled to predict human PK profile of BMS-986090 over a wide dose range (10-300 mg) in healthy subjects.

Results: The observed exposure and RO in monkeys at all dose levels were adequately described by the population-based QE-TMDD PK/RO model, as suggested by the goodness-of-fit (GOF) and dose-stratified visual predictive check (VPC) plots. The projected human concentration-time profiles of BMS-986090 aligned well with the observed profiles from healthy volunteers enrolled in the phase I study.

Conclusions: The population-based QE-TMDD PK/RO model successfully predicted human PK profiles of BMS-986090.