Evaluation of Phenytoin Bioavailability in Subjects on Maintenance Therapy Using a Stable-labeled Isotope Approach

Varun Goel, Richard C. Brundage, James C. Cloyd
Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota

INTRODUCTION

Phenytoin (PHT) is widely used in the treatment of epilepsy, but due to its nonlinear elimination characteristics, PHT's good information on its oral bioavailability and the bioavailability of intramuscular fosphenytoin (FOS) at therapeutically relevant concentrations is limited. The purpose of this study was to investigate the bioavailability/bioequivalence of PHT using stable-labeled (SL) isotopes of PHT or FOS administered intramuscularly or intravenously while patients remained on their oral maintenance regimen.

METHODS

Inclusion/Exclusion Criteria
Subjects were patients 18 years or older with epilepsy, but otherwise healthy, on a maintenance regimen of PHT who were not taking interacting medications.

Study Population
Thirty seven subjects, 39 females and 24 males, age range of 21.0-71.0 years, taking oral PHT (100-700mg/day) were enrolled in the study.

Data Collection
On the study day, subjects were administered a single injection of a 100 mg dose of SL-PHT intramuscularly (IV) and/or SL-FOS intramuscularly (IM) followed by their usual morning PHT dose less than 100 mg.

Sample Collection
Serial blood samples (pre-dose, 1, 2, 4, 6, 12, 24, 48, 72, 96, 120, 144, 168 and 192 h) were collected up to 192 hrs after the SL dose. Plasma concentrations of unlabeled PHT and SL-PHT were measured by a validated gas chromatographic-mass spectrometric assay. Three groups of observations were available from subjects in addition to the unlabeled PHT concentrations from the oral doses: 1) concentrations of both IM and IV SL-PHT following simultaneous administration of distinctly labeled IV SL-PHT and IM SL-PHT on the study day; 2) SL-PHT concentrations following IV administration on the study day; and 3) IM SL-PHT concentrations following SL-FOS on the study day. This study design enabled estimation of bioavailability of IM and PO administration of FOS and PHT, respectively.

ASSUMPTION

As subjects (patients with epilepsy) were on their usual oral maintenance regimen, and a small dose of SL-PHT was administered, it was assumed that the fluctuation in the total concentration in plasma and at the enzyme site was minimal. This assumption imparts a constant clearance to PHT and it can then be modeled as having linear pharmacokinetics.

CONCLUSIONS

Visual plots, general additivity modeling and log-logistic ratio tests did not show significant effects of either age or sex on clearance and volume of distribution of phenytoin in the IV and IM data. Clearance was estimated to be 1.22 L/h with the volume of distribution of 0.89 L/kg. FOS was rapidly absorbed with the population absorption rate constant (KIM) of 1.56 L/h. The population bioavailability (FIM) was not significantly different from 100%. Between-subject variability on CL, V and KIM was 52%, 26% and 98%, respectively. The correlation between CL and V was estimated to be 0.56. Residual variability for the IV and IM data was estimated to be 21%. In the second phase of analysis, the population bioavailability (FPO) of oral PHT was estimated to be 93.5%, and was significantly different from unity. The data on oral and intravenous bioavailability was estimated to be 0.88. Intr-individual variability on FPO was modeled additively with an estimated SD of 0.24. Intr-individual variability on pre-dose amount was estimated to have SD of 61.6 mg. Additive standard deviation for oral data was estimated to be 1.16 mg/L, with intr-individual variability of 60%.

RESULTS

The oral absorption was assumed to follow a zero-order process, the duration of which was estimated. It was not assumed that subjects were at steady state; rather the amount in the central compartment at time t was calculated as the product of the observed pre-dose concentration and the volume of distribution (both available on the data recorded). In addition, a between-subject variate term was placed on this initial amount to allow an individual to deviate from the calculated value. The primary parameters of interest in the analysis of this stage were the typical value and between-subject variability of PHT oral bioavailability. Residual variability was modeled as additive to the predicted concentrations with a proportional intr-individual variability on the estimates of additive variance. This structure was chosen to down-weight individuals with relatively higher fluctuations in their concentrations. The model was fit using the FOCE-I method of estimation.

DATA ANALYSIS

A nonlinear mixed-effects analysis was used to model these data, and was conducted in two stages. Stage I:

Log-transformed IV SL-PHT and IM SL-FOS concentrations were analyzed to obtain population estimates of clearance (CL), volume of distribution (V), the SL-FOS first-order absorption rate constant (KIM), and of the SL-FOS bioavailability (FIM). The structural model was a one-compartment model with linear elimination.

Stage II:

NonMEM VI was implemented using ADVANCE/TRANS2 with FOCE. Between-subject variability on CL, V and KIM was modeled as a log-normal distribution. Residual unexplained variability was modeled additive to the log-transformed predicted concentrations and the variability in the IV and IM concentrations was assumed to be the same. Individual estimates of CL and V were obtained.

Figure 1. Schematic representation of the study design.

Figure 2. Exploratory Plots

Figure 3. Diagnostics for Stage 1

Figure 4. Diagnostics for Stage 2

Figure 5. Individual Fits and Visual Predictive Check for IM/IV Data

Figure 6. Individual Fits and Visual Predictive Check for Oral Data