BACKGROUND
- The therapeutic effectiveness of Drug X as a single agent has been clinically established.
- The efficacy of Drug X in a drug combination was evaluated in a clinical trial in the target patient population.

STUDY DESIGN
- Parallel, fixed doses
 - Group 1 (n=200 pts): Drug combination + Drug X
 - Group 2 (n=200 pts): Drug combination
- PK sampling
 - Up to 4 samples in weeks 1, 4, 12, 24
- Efficacy sampling
 - Up to 7 samples in weeks 0, 2, 4, 8, 12, 16, and 24.

OBJECTIVE
- To quantify the therapeutic value of Drug X in a drug combination.

APPROACH
- To evaluate the effect of Drug X by using modeling.

METHODS (cont’d)

Characterizing Time Course of Response
- Inhibitory (Emax) model
 - Drug effect is a function of time (t) and Drug X exposure (AUC)
 - Linear
 \[\log(\text{Effect}) = V_0 + E_{\text{max}}(1 + \beta \times \text{AUC}_t) / \text{Th} + \epsilon_i \]
 - Non-linear
 \[\log(\text{Effect}) = V_0 + E_{\text{max}} \frac{\text{AUC}_t}{\text{Th} + \epsilon_i} \]

RESULTS (cont’d)

Time Course of Response
- Estimate Probability of Response
 - Binary logistic regression model
 - Probability of response: achieve a target effect in a defined treatment period
 - Probability is a function of Drug X exposure (AUC)

CONCLUSION
- A model-based approach allows the evaluation of effect of a single drug in a combination therapy and is useful to
 - Assess the therapeutic value of Drug X in a drug combination.
 - Establish a scientific rationale for inclusion of Drug X in the combination therapy.