Large Scale Simulations on a Linux Cluster

David A. James (Modeling & Simulation)
David Ohlssen (Clinical Information Sciences)

Novartis

March 10, 2008
Outline

- Study characteristics and the need for a futility rule
- Large scale simulations on a high-performance computing (HPC) environment
- Lessons learned
Background

- Study characteristics and end points:
 - Three arms: Placebo, Low and High doses
 - Event type 1 counts (T1) at N months
 - Event type 2 counts (T2) at N months

- Need for a futility rule for the low-dose arm

A Bayesian methodology was chosen among various alternative, but significant computational challenges were identified.
Our approach

- Develop a Bayesian model for bivariate over-dispersed Poisson counts
- Define a futility rule in terms of Poisson rates
- Conduct simulations to investigate the operating characteristics of the futility rule
- Use distributed computing to address computational challenges
Rules for futility

At the time of the interim analysis, stop the trial if a “good” outcome is “unlikely”

- A good outcome could be

\[\{ T_1 / \text{Placebo} < \tau \} \text{ and } \{ T_2 / \text{Placebo} < \tau \} \]

say, for \(\tau = 0.50 \)

- An unlikely event could be

\[P\{ T_1 / \text{Placebo} < \tau \} < \text{CRIT} \]
\[P\{ T_2 / \text{Placebo} < \tau \} < \text{CRIT} \]

say, for \(\text{CRIT} = 0.10 \)
Characteristics of a futility rule

![Graph showing T1 and T2 rate reduction (%) for different CRIT values (0.05, 0.1, 0.15, 0.2). The graph illustrates the probability of stopping for futility (P{stopping for futility}) against the rate reduction (%). The x-axis represents T1 rate reduction (%), and the y-axis represents T2 rate reduction (%). The graph uses different colors to indicate different probability thresholds (0%, 10%, 20%, 30%, 40%, 50%).]
A Bayesian model

Let Y_{ijk} denote the count for the i^{th} patient, j^{th} outcome (T1 at baseline, T1 at N months, T2), and k^{th} treatment (placebo, treatment k):

$$Y_{ijk} \sim \text{Poisson}(\lambda_{ijk})$$

$$\log(\lambda_{ijk}) = \mu_{ijk} + \eta_{ij}$$

where the random effects $(\eta_{i1}, \eta_{i2}, \eta_{i3}) \sim N_3(0, \Sigma)$. The treatment-to-Placebo ratios of rates are

$$R_1 = \mu_{22}/\mu_{21} \quad \text{for T1}$$

$$R_2 = \mu_{32}/\mu_{31} \quad \text{for T2}$$

Data is generated in R, estimation is MCMC-based in WinBUGS
A Bayesian model (WinBUGS)

```r
for (i in 1:3) {
    for (j in 1:2) {
        mu1[i,j] ~ dnorm(0,0.0001)
        mu[i,j] <- exp(mu1[i,j])
    }
}

for (j in 1:N) {
    RE[j,1:3] ~ dmnorm(zero[1:3],prec[1:3,1:3])
    log.lambda[j,1] <- mu1[1,TRT[j]] + RE[j,1]
    lambda[j,1] <- exp(log.lambda[j,1])
    Y1[j] ~ dpois(lambda[j,1])
    ...
}
for (j in 1:RatiosL) {
}
```
Simulation scenarios and timings

Estimate the probability of stopping for futility:
\[P\{ \frac{T1}{Placebo} < \tau \} < CRIT \text{ and } P\{ \frac{T2}{Placebo} < \tau \} < CRIT \]

- At interim analysis (N months) with \(n \) subjects per arm
- 36 “true” T1/Placebo, T2/Placebo ratios (1.0, 0.9, ..., 0.5)
- \(\tau \) values of 1.0, 0.9, ..., 0.5

Each scenario simulates 2500 trials for a total of 90000 trials
Each simulated trial takes about 1.5 to 2 minutes
Entire simulation study requires about 3 to 4 CPU months
Grid computing: Divide and conquer

- Large number of computers
- Connected by a fast dedicated network
- Software for job submission, scheduling, security, etc.
- Full cluster with about 200 dual-CPU computing nodes (Linux/Irix)
- Nodes partitioned according to “queues”
Simulation requirements and challenges

- Very easy to parallelized
- WinBUGS, R, R2WinBUGS
- WinBUGS high-performance computing limitations:
 - Windows-only application
 - Very rudimentary scripting facilities
 - Undocumented single-instance limitations
 - GUI always displayed

Solutions:

- The cluster provides WINE (windows emulator)
- Setup multiple WINE installations on each compute node
- Connect WinBUGS’ GUI to a virtual windowing manager (Xvfbm)
Simulations

- Split over 50 compute nodes (2 jobs/node)
- Main computations done over a weekend
- Additional computations were required to post-process a large number of output files
- The entire study was compressed to about 4 weeks

Additional futility rules were requested based on zero-count probabilities
Grid distributed computing allowed us to respond in a timely manner
See handout for full computing details
Lessons learned

► “Tools matter”
► Yet a lot of our tools are inadequate for large scale computing
► Some of us need to educate ourselves on modern high-performance computing
► Some application may not be amenable for large scale computing (e.g., SAS appears to be extremely expensive to deploy on clusters)
Acknowledgments

- Chris Harwell
- José Pinheiro
- Jouni Kerman
- Heinz Schmidli