Population Pharmacokinetics and Pharmacodynamics of the Effect of Sarilumab on Absolute Neutrophil Counts in Patients With Rheumatoid Arthritis

Lei Ma¹, Christine Xu¹, Yaming Su¹, Anne Paccaly², Vanaja Kanamaluru¹

¹Sanofi Genzyme, Bridgewater, NJ; ²Regeneron Pharmaceuticals, Inc, Tarrytown, NY

Objectives: Sarilumab is a human mAb blocking the IL-6Ra currently in development for rheumatoid arthritis (RA). Objectives of this analysis were to develop and qualitify a population pharmacokinetic and pharmacodynamic (PopPK/PD) model describing the time course of absolute neutrophil count (ANC) in RA patients and to identify covariates influencing PK/PD relationships using combined data from phase 1 through 3 studies. In sarilumab clinical studies, no relationship between decreases in ANC and infection was identified.

Methods: A sequential approach was used: a population pharmacokinetic model was developed first, followed by PopPK/PD model development. Model-predicted individual concentration time course was used to develop a PopPK/PD model for ANC over time after subcutaneous administrations of sarilumab 50 to 200 mg every week or every 2 weeks (q2w) in 1672 patients. Covariates were evaluated using a stepwise approach. The final PopPK/PD model was evaluated by visual predictive check and bootstrap.

Results: ANC time course after sarilumab administration was described by an indirect-response model, linking sarilumab concentrations with ANC via stimulation of ANC elimination rate. Population parameter estimates in the final model translated into a population mean 60% maximal decrease of ANC from baseline, and the population-lowest-possible ANC level was 2.15×10^9/L with EC$_{50}$ of 10.3 mg/L. Effect on ANC reduction was less (31% reduction from baseline) and fluctuations within each dosing interval were higher for 150 mg q2w than for 200 mg q2w (39% reduction from baseline). The final PopPK/PD model included covariates of smoking status, prior corticosteroids, and body weight on PD parameters. Effect of the above covariates was small, with no clinically meaningful influences on ANC time course.

Conclusions: Consistent with observed dose-related ANC reduction in clinical studies, ANC described by an indirect-response model decreased rapidly within 1 to 2 weeks and stabilized 4 weeks after subcutaneous sarilumab administration in RA patients. There was no clinically meaningful influence of the covariates investigated.