Relationship between nintedanib exposure, clinical efficacy and adverse events in patients with idiopathic pulmonary fibrosis (IPF)

U. Schmid1, B. Weber1, C. Dallinger1, L. Richeldi2, C. Hallmann1, G. Raghu3, M. Freiwald1

1Boehringer Ingelheim Pharma GmbH & Co. KG; 2National Institute for Health Research Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK; 3University of Washington, Seattle, Washington, USA

Objectives: To explore the relationship between nintedanib exposure and absolute change in forced vital capacity (FVC) and adverse events.

Methods: Data from 1403 IPF patients receiving nintedanib doses of 50-150 mg bid (N=895) or placebo (N=508) for up to 52 weeks in one phase II (TOMORROW) and two phase III trials (INPULSIS®-1 and INPULSIS®-2) were analyzed. A longitudinal disease progression modeling framework was used to describe the natural FVC decline in patients over time in dependence of nintedanib exposure. A parametric time-to-first event modeling approach was applied to investigate the relationship between nintedanib exposure and the probability of experiencing diarrhea or ALT and/or AST elevation to \geq 3x ULN. Observed and pharmacokinetic (PK) model predicted pre-dose plasma concentrations at steady-state (C\textsubscript{pre,ss}) were selected as exposure metrics.

Results: The FVC data were described by a linear disease progression model with a disease-modifying drug effect. An Emax relationship was established for both observed and PK model predicted C\textsubscript{pre,ss} with EC\textsubscript{80} estimates of 10 and 13 ng/mL, respectively. A reliable association between nintedanib exposure and the risk to develop diarrhea could not be established; results rather indicate that dose is a better predictor for diarrhea than exposure. A weak relationship between nintedanib exposure and ALT and/or AST elevations was found with a trend towards increased hazard with increasing nintedanib exposure based on limited data (i.e. 41 safety events).

Conclusions: The exposure-efficacy/safety analyses provide a modelling framework for a quantitative benefit-risk assessment in patients with IPF with altered nintedanib exposure due to comedication or patient characteristics.

Disclaimer: The results in this abstract have been previously presented in part at ATS (San Francisco, CA, May 2016) and ERS (London, UK, September 2016)